
Tag AI-Sandbox

Roberto Andre Mossi Milla

Computer Science Student, Gannon University

Dr. Ramakrishnan Sundaram

Electrical and Cyber Engineering Professor, Gannon University

Abstract

This paper develops a TagAI-Sandbox through competition between different subjects and the survival

aspect of a game of tag. Using genomes, we create sophisticated entities that coordinate themselves for

the benefit of their survival. Through a number of tryouts using reinforced learning with genomes as the

base, we look for the fittest survival genes and self-development strategies. We later introduce their clever

reasoning development abilities through the use of more complex environments at random which leads

to more human-like skills. This investigation has been done before on other games like Open-AI hide &

seek, but for this research we added more human-like behaviors and used genomes to see their ingenuity

from a biology perspective. This research supports the development of the curriculum by introducing

students from the Department of Computer Science (CS) to the development of artificial intelligence, and

how other areas like biology can bring further development into the technology that they develop. We

compare how this relates to the biological structure of organisms towards their decision-making based on

tasks, random initialization, and constraints. Based on their behavior, we will propose fine-tuning ways

to improve the research further towards a replication of human behavior through the use of genomes.

Introduction

Using genomes the behavior of the subjects will be determined through their genes. The genes will be determined at

the beginning through a randomizer, this is done in order to give the entities a starting point to learn and adapt for the

survival tasks they need to complete. From there a task is given to them, in this case we are looking on two groups

to be established at random and for does groups to be compromised as runners and seekers. The task from does set

groups will be, seekers need to catch the runners and hiders must run from them in a limited amount of times. The

1



seekers who caught their target get to survive, while does who did not die on the spot. As for the opposing team will

apply the same principle but with the idea of preventing from getting caught.

For developing this project as a whole, I developed the project using Unreal Engine. The idea behind using Unreal

Engine was because I knew that for human-like behavior interactions require physics. There were many options but

Unreal Engine is one of the most popular in the market, but as well known to bemore complex because of their language

being C++. I took this as a challenge hoping to get as much performance as possible. I am assisted by some libraries

for this to be possible. One of this is Pytorch, this is used for the development of artificial intelligence. The other

library is Cuda, which its functionality is to redirect the graphics processing from the project to the graphics card to let

the rest of the computer do the work regarding its behavior.

Related Work

For a while there have been many attempts of creating artificial intelligence that focus on the study of the living

organisms. For this specific situation, there is an inspiration from two specific projects. The first project is the Multi-

Agent Hide and Seek [1] developed by Open-AI. This project gave me the inspiration of making a environment based

on a game to study the ingenuity of AI for problem solving situations. The second project is the video I programmed

some creatures [2]. This project has the main idea of managing the behavior of the organisms with the use of genomes

through the environment constrains. This gives a connection between the world of computer science and biology.

Prerequisites

Type Version Name Description Why

Language C++20 C++ Is a low-level OOP language It is quite popular for AI-Programming

used for Unreal Engine and the speed.

Language 3.31.6 CMake A language used for Because I am using different repositories,

automatization between I use cmake to automate setup and

every OS to make it compatible with every OS

Library 12.0.0 Cuda Programming Model for GPU In order to make for the high graphic

computation processing, this library is used to

increase its speed with GPU computing.

Graphics 5.4.4 Unreal Used for creating a graphic Is able to handle complex computing and

Engine visualization of the entities high performant

World Generation

For this case it was obvious that the entities will require to have a world where they can navigate to. With that on mind

at the beginning I thought about doing a generic static world where they could run around freely and learn how to play

the game by themselves. But It came to me that at some point they might be very good at playing the game but with no

more room of growth then the world they taught themselves in constantly. So for this to be solved I knew that I would

have required to make new worlds at some point so they can apply their findings in new cases to improve further in

their decision making. But That would mean that after every cycle they adapt to a new world I would need to model a

new world with my hands. This would take time in the long term which I did not wanted to spend on idealizing new

worlds. So for this situation I had decided to make a world generator1. This decision in long term projects like the Hide

1Code can be found at https://github.com/AndreM222/Procedural-Generator

2



& Seek from Open-AI where a very obvious decision to make, but in most small projects people tend to just model

different worlds by hand. But to remove redundancy a random world generator will be beneficial.

For creating this world I first started planning what algorithm to use. I stumbled upon many videos and documenta-

tions regarding people creating their own generators in Unreal Engine, and outside of that scope. For most of them they

had applied an algorithm named A-Star Algorithm. This one was quite a useful one and mostly for auto generation.

The idea behind it is to use Dijkstra’s algorithm that takes in consideration all neighbors, checks for the shortest path

to the end, and checks the most optimal path, but also taking in consideration the distance from the current node to

the very last node which we plan it to arrive to [3]. This is very useful in situations where there is an ending and a

beginning set [4].

I had decided to instead go with more of a breath-first-search algorithm [5] like but without looking for an endpoint,

just for a total amount of rooms to place. The reason behind this idea is because even thought there is a benefit for

using more of a complex algorithm of that sort, that is mostly if I decide that they need arrive at a specific destination.

In this situation the goal does not have a specific place to go to, but instead is for them to run from each other to prevent

being caught. Now knowing that we are not looking for an end point, we can start shortening our options to decide an

algorithm to develop this. At the end I chose more randomized solution.

This world generation solution works as follows. When the world generation starts running I set up one starting

point which we will call origin. When we start running the origin will spawn a random room. This rooms to connect

with each other we add arrows in the exit arrow folder of set room. The arrows will be required to be moved to the

corner in which we desire to be spawn and rotated pointing towards the direction we want it to be spawned. From does

set arrows the generator will randomly choose one of the exits and spawn the next connecting room. This will repeat

until the total desired rooms desired have been spawned [6].

Rooms setup

3



World Generator Preview

Collision Detection

But what will happen if there are no more exits available? Taking that question in consideration I created two more

functions. The ones being reboot and delete room. The reboot function what it does is it runs the delete the room for

each room that has been created, once all have been removed it runs a delete function for the current generator which

awaits for all the remaining instructions to run before deleting itself. After that we run the last instruction which spawns

a new room generator and starts the whole process again randomly generating a newworld with the requirements given.

But what about collision between different rooms, will it overlap? For this situation I created various functions that

will cover collisions in different situations. This situations can be separated into two different categories.

General Collision: For the general collision all we require is to get any space that it is trying to spawn and find if

there is anything on that spot. For that the function generates a invisible tracing box which if it collides with anything

then it tells it to look for a new spot.

// Setup Box Dimensions for trace
FVector BoxDimensions = FVector(50, 50, 50);

FVector traceLocation = exitLocation.GetLocation();

// Trace box to check if collision available
FCollisionShape box = FCollisionShape::MakeBox(BoxDimensions);
exitsList[spaceIndex]->GetWorld()->SweepSingleByChannel(

Hit,
traceLocation,
traceLocation,
FQuat::Identity,
ECC_Visibility,
box,
QueryParams

4



);

// Return true if room type has been found connected
if (Cast<AMaster_Room>(Hit.GetActor())) return true;

Dimension Spawn: Based on the dimensions of the room it is trying to spawn, we require to find if there is

sufficient space for the spot to be occupied. But to get the dimensions of said room, with the current version of unreal

engine is not possible to pre-calculate it. For this I did a hacky solution, it was to spawn briefly the desired room to

gets it’s dimensions, save it in a transformation variable, and destroy the room. All of this is done really fast that we

can’t see the spawned room. from there on with the general collision, we pass our new calculated values and replace

the tracing box dimensions with the new values to have precise collision testing.

// Make temporary room
AActor* roomModel = GetWorld()->SpawnActor<AMaster_Room>(

RoomToSpawn[roomIndex],
exitLocation.GetLocation(),
FRotator::ZeroRotator,
SpawnParams

);

// Setup Box Dimensions for trace
FVector BoxDimensions = FVector(roomModel->GetComponentsBoundingBox().GetExtent() - 4);
BoxDimensions.Z += 3;
roomModel->Destroy(); // Destroy tmp room after setup

FVector traceLocation = exitLocation.GetLocation() + (
exitLocation.GetLocation() - actorLocation.GetLocation());

traceLocation.Z += BoxDimensions.Z; // Center Box Trace

// Trace box to check if collision available
FCollisionShape box = FCollisionShape::MakeBox(BoxDimensions);

Encapsulating World

In this world we are creating, we need to add some restrictions for the entities. These restrictions will help prevent the

entities of walking off bounds and falling to the emptiness. The main focus for this project isn’t for them to learn where

they can fall off from, but how to react to the interaction between various entities. For this preventions, I decided to

encapsulate the exits which have been left empty at the end of the generation with walls.

For the closing of the walls we might want to prevent them from spawning in places which connect to different

rooms. If we did not do this then it will not be different from making a maze. Lets mention how I differentiate between

generating a world, and a maze. A maze is generally restrictive. The movement is constrained by paths bordered by

walls which is generally defined as corridors. While a world in this case we see it less restrictive which has is composed

by corridors and open spaces.

To prevent walls for being created everywhere, small trace boxes are created. This trace boxes are made just in

5



order to find out if there is any rooms connected to the desired spot that the wall wants to be allocated. If there is a

connected room than we remove from the opened exit list and move on to the next exit to close. If the desired room

to spawn can not be placed in any of the exits, this is removed from the possible rooms to spawn and moves on to the

next room until no more exits and rooms are available.

Creation of Rooms

Seed

At some point I realized that we might want to keep the entities in a specific room for a period of time. For this I had

decided to add a seed option2 . When a seed is used then depending on the number it will generate a room which no

matter how many reloads it goes through, it always stays the same. But the problem of using a seed is there will be an

opportunity for the desired total rooms to be spawned to not be able to take place. This is phenomenon could happen

by the rooms spawning in a specific path, which at some point could end up eating its own tail and not having any other

available exit. For this case, I told the generator to skip the loop of making new generators till one goes accordingly

with the requirements. The reason of this is to prevent a infinite loop from happening.

Props Spawner

2More information can be found at https://github.com/AndreM222/Procedural-Generator/blob/main/docs/setup.md

6



Props settings

Props and Spawners

To add spawners for the entities and as well adding obstacles, I implemented a spawning function which spawns

randomly with filter capabilities actors we desire to spawn throughout the rooms. This look for the spawning arrows

in the spawners folder.

Character Setup

For the 3D model and the animations I am using the assets of a pack called Advance Locomotion System V4 [7].

This Pack contains a whole of useful animations and some simple models that I could benefit from to focus on the

development of the actions and thinking of the characters.

This pack also comes with a setup for movement but it was fully done in blueprints which is not easily accessible

with C++, so for this situation I made my own logic regarding the interaction the entities3 do in the 3D space. The

behaviors included in the project where all done using blueprints. This is one of the perks of Unreal Engine, but an issue

arises. At the moment is not possible to interact from C++ to blueprints, but it can be done backwards. So currently I

made my own version of locomotion for realistic movement but with the animations from the package.

Character Setup

3Code can be found at https://github.com/AndreM222/AI-Entities

7



States

States are the different stances in which the entities can change depending on their interaction. For applying more

human-like interactions in the real world. Interactions could have been done without animations but if we want to take

into consideration delays in reaction and ease of showcase, I decided to use the asset pack animations to make this

possible. The following are the available states made.

• Used: Is currently being used for some kind of interaction.

• Planned: Is ready to be used but has not combined it with the logic to activate it.

Stance Description State

Default Is a stance which invokes neutrality and peace Planned

Masculine Is ready for combat or try to show power Used

Feminine Is more graceful and noble stance Planned

Injured Shows the low amount of health the entities have Used

HandsTied This will showcase the when restriction is present in entities Planned

Rifle Holding a riffle Planned

Pistol 1H Holding a pistol with 1 hand Planned

Pistol 2H Holding a pistol with 2 hands Planned

Bow Holding a bow Planned

Torch Holding a torch for illumination Planned

Binoculars Holding binoculars to see from far away Planned

Box Carrying boxes Planned

Barrel Carrying a barrel Planned

Reach Is a stance for reaching towards the target to touch for range Planned

Actions

Actions is the different capabilities the entities have to interact with the world. This adds more complexity and variety

to the thinking of the entities.

Action Description State

Run High speed movement Used

Sprint Medium Speed Movement Used

Walk Slow speed movement Used

Crouch Crouching in small spaces Used

Climb Climb walls Used

Grab Grab a prop Planned

Drop Drop item holding Planned

Jump Jumping Used

Touch Touch the target Used

8



Previews Of Actions

Decision Making Through Genomes

I have started the development of the character intelligence with the use of genomes, but it is still missing a variety of

functions for them to make rational choices through generations of data being provided from parents.

This application was successful to run in simple tasks like the entities having the need to go to specific areas of the

map. But tag is a more complex task which will require more data and capabilities for the entities.

Genetic Algorithm

For more detail on how this works is through the use of genetic alogithm [8]. Which this means is the use of evolition.

As to decision making, we could let one entity just try to wire its own brain with something called a mutation. But

there will be a limit to how much it can grow, or find better ways of solving a problem. As you all know when it

comes to self development there are internal and external factors which help us grow. Internal are seen as things we

experienced and we use to make decisions, but as for external are does who teach us of their experience. This factor

makes not only grow which thats what internal does, but grow in the most efficient way.

9



Genetic Algorithm

NEAT Algorithm

NEAT Algorithm [9] utilizes the genetic algorithm, but it puts the idea of genomes into action to develop their brains.

By having the senses, actions, and the internal neurons. These neurons wire up as augmented topologies which means

that their brain evolves as it desires. But as to have some control over we set up a max limit of neurons.

The algorithm will grab two parents and combine them by using pheromones dictated by their likeness, which in

this case is defined as how well they solve their task. All of these neurons can combine with each other and themselves.

But for some cleanup, we set up a function that detects if some connection is not doing anything by itself and deletes

it.

If an entity has too many senses it can get overwhelmed and not do their actions correctly, but if it has too little

then it won’t find the best way of solving a problem.

NEAT Algorithm

Senses

For these entities, I started developing senses like humans have. By senses, I mean by sense of hearing, sense of sight,

etc. But for this project we will limit this to the following.

10



Type of Sense Description Status

Space This sense will give the entities the ability to know where they are. Being Used

Touch It will be used to obtain data of their interaction to decide if they In Development

like or dislike.

Sight For the entities to know what is in front of them and decide what to do. Being Used

But every input has subdivisions which create extra complexity. For example in order to get sight we need to get

the distance of actors, distance of wall, quantity of population, and so on. For this, a variety of tracings are used in

order to calculate distance, quantity, whats in front, etc.

Previews Of Senses

The initial behavior had only running, jumping, and climbing as actions. For senses, we detected population density

and distance as well as a very minimal setup of boundary distance. The characters started only going in circles and not

doing anything special. Sowe addedmore senses and actions like ledge detection, current location based on boundaries,

and normalized values, we increased their thinking process and they started navigating more, some of them not doing

anything, and some jumping if either a wall was detected nearby or the contrary. This was fascinating to see as how

they started developing more the more they could sense and do.

All In One

Since this project scale is quite large and as well many assets could be used for testing which wont be needed at the

final product, I separated all the components in different repositories. But this will mean that there should be a mergin

at some point. Unreal Engine is not as easy to work when it comes to mergin different projects into one as other tools,

so I required to make a automated merger using a cmakelist 4.

This project will handle the UI and the communication between all of the components made without affecting the

original scripts. This makes it secure to prevent breaking code by isolating it in different repositories.

Why CMake

I thought originally tomake a bash file to run themerging between the projects, but this would limit the setup on specific

operating systems. CMake, even though a installation is required, the process of running works cross-platform making

4For merged project go to https://github.com/AndreM222/Tag-AI-Sandbox

11



it an ideal choice.

How To Add

To make the setup easier, I decided to use a json file to list the projects desired to merge as well with a filtering option.

This merger takes care of removing the non-important files like the build and main script of the projects and replaces

all of the APIs with the current project one.

Evaluation

Path

The entities seem to end up following a pattern of going to specific directions until is able to either touch its target,

or avoid it. But there seems to be a constant improvement over time of their behavior and adaptation in different

environments.

I tried running it through the same requirements as the I programmed some creatures [2] to test out what will happen

with a more basic mission like going to specific areas of the map. As I run them, they ended up reacting the same. This

might be because a game of tag requires to have senses like sight, touch, and sense of space. To make more rational

decisions.

Obstacles

As not many test have been run, for now the entities seem to walk towards the wall in certain angles until is able to

cross to the other side if needed.

More testing will be required to see how their behavior improves over time.

What Comes Next

I will continue developing the structure for their decision making and move the project to the super computer to start

obtaining data while I keep implementing features. I also need to develop a UI which can give me data from the

occurrences and as well take screenshots every generations. While the entities are running in the background I will be

working on the extra behaviors to implement them.

To improve the decision making of the entities I will start incorporating some senses to them. This will improve

their decision making by being able to choose location based on where they where, touch, or saw. As well what they

find as interesting, dangerous, or non-important.

The entities behavior is still primitive and require further development to see their improvement in their behavior.

Further iterations are required to see how they interact more with their environments and if they successfully are able

to learn how to catch or escape from the target.

12



References

[1] OpenAI. “Multi-agent hide and seek,” Accessed: Feb. 14, 2025. [Online]. Available: https://www.youtube
.com/watch?v=kopoLzvh5jY.

[2] D. R. Miller. “I programmed some creatures,” Accessed: Feb. 14, 2025. [Online]. Available: https://www.yo
utube.com/watch?v=N3tRFayqVtk&t=2368s.

[3] GeeksForGeeks. “A* search algorithm,” Accessed: Feb. 14, 2025. [Online]. Available: https://www.geeksf
orgeeks.org/a-search-algorithm/.

[4] Jacob. “I rewrote my dungeon generator!” Accessed: Feb. 14, 2025. [Online]. Available: https://www.youtu
be.com/watch?v=NpS5v_Tg4Bw&t=200s.

[5] GeeksForGeeks. “Breadth first search or bfs for a graph,” Accessed: Feb. 5, 2025. [Online]. Available: https:
//www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/.

[6] R. Ree. “How to create epic procedural dungeons,” Accessed: Feb. 14, 2025. [Online]. Available: https://ww
w.youtube.com/watch?v=4ddbnQIuwAM.

[7] Longmire. “Advance locomotion system v4,” Accessed: Feb. 14, 2025. [Online]. Available: https://www.fab
.com/listings/ef9651a4-fb55-4866-a2d9-1b38b028f9c7.

[8] GeeksforGeeks. “Genetic algorithms,” Accessed: Mar. 30, 2025. [Online]. Available: https://www.geeksfor
geeks.org/genetic-algorithms/.

[9] R. MacWha. “Evolving ais using a neat algorithm,” Accessed: Mar. 30, 2025. [Online]. Available: https://ww
w.geeksforgeeks.org/a-search-algorithm/.

13

https://www.youtube.com/watch?v=kopoLzvh5jY
https://www.youtube.com/watch?v=kopoLzvh5jY
https://www.youtube.com/watch?v=N3tRFayqVtk&t=2368s
https://www.youtube.com/watch?v=N3tRFayqVtk&t=2368s
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.youtube.com/watch?v=NpS5v_Tg4Bw&t=200s
https://www.youtube.com/watch?v=NpS5v_Tg4Bw&t=200s
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.youtube.com/watch?v=4ddbnQIuwAM
https://www.youtube.com/watch?v=4ddbnQIuwAM
https://www.fab.com/listings/ef9651a4-fb55-4866-a2d9-1b38b028f9c7
https://www.fab.com/listings/ef9651a4-fb55-4866-a2d9-1b38b028f9c7
https://www.geeksforgeeks.org/genetic-algorithms/
https://www.geeksforgeeks.org/genetic-algorithms/
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/a-search-algorithm/

	Introduction
	Related Work
	Prerequisites
	World Generation
	Collision Detection
	Encapsulating World
	Seed
	Props and Spawners

	Character Setup
	States

	Actions
	Decision Making Through Genomes
	Genetic Algorithm
	NEAT Algorithm
	Senses

	All In One
	Why CMake
	How To Add

	Evaluation
	Path
	Obstacles

	What Comes Next
	References



