Published in the Proceedings of the ASEE Annual Conference'
Presentado en la Universidad Estatal de Pensilvania (Sigma Xi)®

Al Jugando Las Traes

Roberto André Mossi Milla
Estudiante de Ciencias de la Computacion, Universidad de Gannon
Dr. Ramakrishnan Sundaram
Profesor de Ingenieria Eléctrica y Cibernética, Universidad de Gannon

Resumen

Este articulo desarrolla un Al que juega a las traes a través de la competencia entre diferentes sujetos
y el aspecto de supervivencia de un juego de las traes. Mediante el uso de genomas, se crean entidades
sofisticadas que se coordinan entre si para el beneficio de su supervivencia. A través de multiples pruebas
utilizando aprendizaje reforzado con genomas como base, se buscan los genes de supervivencia mas aptos
y estrategias de auto-desarrollo. Posteriormente, se introducen sus capacidades de razonamiento mediante
el uso de entornos mas complejos generados aleatoriamente, lo que conduce a habilidades mas similares
a las humanas. Esta investigacion ya ha sido realizada previamente en otros juegos como Open-Al hide
& seek, pero para este estudio se afiadieron comportamientos mas humanos y se utilizaron genomas para
observar su ingenio desde una perspectiva biologica. Esta investigacion apoya el desarrollo del curriculo al
introducir a estudiantes del Departamento de Ciencias de la Computacion (CS) al desarrollo de inteligencia
artificial, y como otras areas como la biologia pueden aportar un desarrollo adicional a la tecnologia que
desarrollan. Se compara como esto se relaciona con la estructura bioldgica de los organismos en su toma
de decisiones basada en tareas, inicializacion aleatoria y restricciones. Con base en su comportamiento,
se propondran métodos de ajuste fino para mejorar la investigacion hacia una replicacién mas cercana del
comportamiento humano mediante el uso de genomas.

IPublicacién de ASEE disponible en https://peer.asee.org/54692
2Presentado en la Exposicion de Investigacion Sigma Xi de la Universidad Estatal de Pensilvania (https://sites.psu.edu/behrendsigma
x12025/2025/03/11/tag-ai-sandbox/|)

https://peer.asee.org/54692
https://sites.psu.edu/behrendsigmaxi2025/2025/03/11/tag-ai-sandbox/
https://sites.psu.edu/behrendsigmaxi2025/2025/03/11/tag-ai-sandbox/

Introduccion

Utilizando genomas, el comportamiento de los sujetos sera determinado a través de sus genes. Los genes se deter-
minan al inicio mediante un proceso aleatorio, con el fin de otorgar a las entidades un punto de partida para aprender
y adaptarse a las tareas de supervivencia que deben completar. A partir de ahi, se les asigna una tarea; en este caso, se
establecen aleatoriamente dos grupos, los cuales se dividen en corredores y buscadores. La tarea de estos grupos con-
siste en que los buscadores deben atrapar a los corredores, y los corredores deben huir de ellos en un numero limitado
de intentos. Los buscadores que logran atrapar a su objetivo sobreviven, mientras que aquellos que no lo hacen mueren
inmediatamente. El equipo contrario aplica el mismo principio, pero con el objetivo de evitar ser atrapado.

Para el desarrollo completo de este proyecto, se utilizd Unreal Engine. La razon detras de usar Unreal Engine es que
las interacciones de comportamiento similares a las humanas requieren fisica. Existen muchas opciones, pero Unreal
Engine es uno de los motores mas populares del mercado, aunque también es conocido por su mayor complejidad debi-
do a que su lenguaje principal es C++. Se tomo esto como un desafio con la esperanza de obtener el mayor rendimiento
posible. Para lograrlo, se cuenta con la asistencia de varias librerias. Una de ellas es PyTorch, utilizada para el desa-
rrollo de inteligencia artificial. La otra es CUDA, cuya funcionalidad consiste en redirigir el procesamiento grafico del
proyecto a la tarjeta grafica, permitiendo que el resto del sistema se encargue del procesamiento del comportamiento.

Trabajos Relacionados

Durante un tiempo, han existido multiples intentos de crear inteligencia artificial enfocada en el estudio de organis-
mos vivos. Para este caso especifico, existe inspiracion en dos proyectos concretos. El primer proyecto es Multi-Agent
Hide and Seek [2]], desarrollado por Open-Al. Este proyecto brindo la inspiracion para crear un entorno basado en un
juego con el fin de estudiar el ingenio de la IA en situaciones de resolucion de problemas. El segundo proyecto es el
video I programmed some creatures |3]]. Este proyecto tiene como idea principal la gestion del comportamiento de los
organismos mediante el uso de genomas bajo las restricciones del entorno. Esto establece una conexion entre el mundo
de la informatica y la biologia.

Requisitos
‘ Tipo ‘ Version ‘ Nombre ‘ Descripcion Razén

Lenguaje | C++20 | C++ Lenguaje OOP de bajo nivel Es ampliamente utilizado en

usado para Unreal Engine programacion de IA
y por su velocidad.

Lenguaje | 3.31.6 CMake | Lenguaje utilizado para Al usar multiples repositorios,
automatizacion entre sistemas se emplea CMake para automatizar
operativos la configuracion y asegurar

compatibilidad multiplataforma

Libreria 12.0.0 Cuda Modelo de programacion para GPU | Para procesamiento grafico

intensivo, se usa esta libreria
para acelerar el calculo por GPU

Graficos | 5.4.4 Unreal | Creacion grafica y visualizacion Capaz de manejar computacion

Engine | de entidades compleja y alto rendimiento

Generacion del Mundo

En este caso era evidente que las entidades requerian un mundo en el cual pudieran desplazarse. Inicialmente se
consider6 crear un mundo estatico genérico donde pudieran moverse libremente y aprender el juego por si mismas.
Sin embargo, surgi6 la posibilidad de que eventualmente se volvieran muy buenas jugando, pero sin espacio adicional
para crecer al estar limitadas al mismo entorno. Para resolver esto, se determind que seria necesario generar nuevos
mundos para que pudieran aplicar lo aprendido en nuevos escenarios y asi mejorar su toma de decisiones. Hacer esto
manualmente después de cada ciclo implicaria un costo de tiempo significativo, por lo que se decidié implementar un
generador de mundosﬂ Esta decision ya habia sido aplicada en proyectos a largo plazo como Hide & Seek de Open-
Al, aunque en proyectos pequefios suele modelarse el mundo manualmente. Para evitar redundancia, un generador
aleatorio resulta beneficioso.

Para crear este mundo, primero se planifico el algoritmo a utilizar. Se revisaron diversos recursos sobre generadores
en Unreal Engine y fuera de ¢él. Muchos utilizaban el algoritmo A-Star, basado en el algoritmo de Dijkstra, el cual
considera vecinos, rutas mas cortas y distancia al nodo final [4]. Esto es 1til cuando existe un punto inicial y final
definido [3].

En su lugar, se opto por un enfoque similar a un algoritmo de busqueda en anchura [6]], sin un punto final definido,
sino con un nimero total de salas a generar. Dado que el objetivo del juego no es llegar a un destino especifico, sino
huir o perseguir, se eligioé una soluciéon mas aleatoria.

El proceso funciona de la siguiente manera: se define un punto inicial llamado origen, el cual genera una sala
aleatoria. Las salas contienen flechas de salida que indican posibles conexiones. El generador elige aleatoriamente una
salida y genera la siguiente sala conectada, repitiendo el proceso hasta alcanzar el numero deseado de salas [[7].

Exit Arrow
R Arrow2
R Arrow4
R Arrow1
R Arrow3

ANYPFARNYFo—

Figura 1: Configuracion de Salas

Deteccion de Colisiones

(Pero qué ocurrira si ya no hay mas salidas disponibles? Teniendo esa pregunta en consideracion, creé dos funciones
adicionales: reboot y delete room. La funcién reboot lo que hace es ejecutar la eliminacion de cada habitacion que haya
sido creada; una vez que todas han sido eliminadas, ejecuta una funcion de borrado para el generador actual, la cual
espera a que se ejecuten todas las instrucciones restantes antes de eliminarse a si misma. Después de eso, se ejecuta
la ultima instruccion, que genera un nuevo generador de habitaciones e inicia todo el proceso nuevamente, generando
aleatoriamente un nuevo mundo con los requisitos dados.

Pero, ;qué sucede con la colision entre diferentes habitaciones?, ;se superpondran? Para esta situacion creé varias
funciones que cubren colisiones en distintos escenarios. Estas situaciones pueden separarse en dos categorias diferentes.

VEl codigo puede encontrarse en https://github.com/AndreM222/Procedural-Generator

Figura 2: Vista Previa del Generador

* Colision General: Para la colision general, todo lo que se requiere es obtener el espacio donde se intenta generar
una habitacion y comprobar si existe algo en ese punto. Para ello, la funcidon genera una caja de trazado invisible
que, si colisiona con cualquier objeto, indica que se debe buscar una nueva ubicacion.

Comprobacion de barrido de colisiéon

// Setup Boxz Dimensions for trace
FVector BoxDimensions = FVector (50, 50, 50);

FVector tracelocation = exitLocation.GetLocation();
// Trace box to check if collision available

FCollisionShape box = FCollisionShape: :MakeBox(BoxDimensions) ;
exitsList[spaceIndex]->GetWorld () ->SweepSingleByChannel (

Hit,
10 tracelLocation,
11 traceLocation,
12 FQuat::Identity,
13 ECC_Visibility,
14 box,
15 QueryParams

16)3

18 // Return true if room type has been found connected
19 if (Cast<AMaster_Room>(Hit.GetActor())) return true;

* Generacion por Dimensiones: En base a las dimensiones de la habitacién que se intenta generar, es necesario
verificar si existe espacio suficiente para que dicho punto pueda ser ocupado. Sin embargo, obtener las dimen-
siones de una habitacion de antemano no es posible con la version actual de Unreal Engine. Para resolver esto,
implementé una solucion improvisada: generar brevemente la habitacion deseada para obtener sus dimensiones,
almacenarlas en una variable de transformacion y luego destruir la habitacion. Todo este proceso ocurre tan ra-
pido que la habitacion generada no llega a ser visible. A partir de ahi, junto con la colisiéon general, se pasan
los nuevos valores calculados y se reemplazan las dimensiones de la caja de trazado para realizar una prueba de
colision mas precisa.

Generador de dimensiones cpp

1 // Make temporary room

2 AActor* roomModel = GetWorld()->SpawnActor<AMaster_Room>(
3 RoomToSpawn [roomIndex],

4 exitLocation.GetLocation(),

5 FRotator: :ZeroRotator,

6 SpawnParams

7

8

9

H

// Setup Boxz Dimensions for trace
10 FVector BoxDimensions = FVector (roomModel->GetComponentsBoundingBox () .GetExtent() - 4);
11 BoxDimensions.Z += 3;
12 roomModel->Destroy(); // Destroy tmp room after setup

14 FVector traceLocation = exitLocation.GetLocation() + (
15 exitLocation.GetLocation() - actorLocation.GetLocation());
16 traceLocation.Z += BoxDimensions.Z; // Center Boz Trace

18 // Trace boz to check if collision available
19 FCollisionShape box = FCollisionShape: :MakeBox(BoxDimensions) ;

Encapsulacion del Mundo

En el mundo que estamos creando, es necesario agregar ciertas restricciones para las entidades. Estas restricciones
ayudan a evitar que las entidades salgan de los limites del mundo y caigan al vacio. El enfoque principal de este proyecto
no es que aprendan donde pueden caerse, sino como reaccionar ante la interaccion entre diversas entidades. Para estas
prevenciones, decidi encapsular con paredes las salidas que quedaron vacias al final de la generacion.

Al cerrar las paredes, es importante evitar que se generen en lugares que conectan con otras habitaciones. Si no se
tomara esta precaucion, no habria diferencia entre un mundo y un laberinto. Para aclarar esta distincion: un laberinto
es generalmente restrictivo; el movimiento esta limitado por caminos delimitados por paredes, cominmente definidos
como corredores. En cambio, un mundo, en este contexto, es menos restrictivo y esta compuesto tanto por corredores
como por espacios abiertos.

Para evitar que las paredes se generen en todos los lugares posibles, se crean pequeiias cajas de trazado. Estas cajas
se utilizan Ginicamente para detectar si existe alguna habitacion conectada al punto donde se desea colocar la pared. Si
se detecta una habitacion conectada, dicha salida se elimina de la lista de salidas abiertas y se continua con la siguiente
salida a cerrar. Si la habitacion deseada no puede colocarse en ninguna de las salidas disponibles, se elimina de la lista
de habitaciones posibles y se contintia con la siguiente hasta que no queden mas salidas ni habitaciones disponibles.

Semilla

En cierto punto me di cuenta de que podria ser Gtil mantener a las entidades en una habitacion especifica durante
un periodo de tiempo. Para ello decidi agregar una opcion de semilleﬂ Cuando se utiliza una semilla, dependiendo
del valor, se generara una habitacion que permanecera igual sin importar cudntas veces se recargue. Sin embargo, el
uso de una semilla introduce la posibilidad de que no se logre generar el numero total de habitaciones deseado. Este
fenémeno puede ocurrir cuando las habitaciones se generan siguiendo un camino especifico que eventualmente termina
cerrandose sobre si mismo, sin dejar salidas disponibles. Para este caso, indiqué al generador que omitiera el ciclo de
creacion de nuevos generadores hasta que uno cumpliera con los requisitos establecidos. Esto se hizo para evitar la
ocurrencia de un bucle infinito.

2Més informacién disponible en https://github.com/AndreM222/Procedural-Generator/blob/main/docs/setup.md

masterRoom

Room_Floor

Room_Wall1 Room_Wall3 Room_Wall2L Room_Wall2R

Figura 3: Creacion de Habitaciones

Room Setup (RoomSetup)

A, Spawners (Spawners)
® Item4
X Item3
w Item2
X Iteml

P (22 4 —/S—51 K74
~*f ConstructionScript
zs0

zH

avA—FVk

ARVRFAR Iy F o=

Figura 4: Generador de Props

MasteProp v € BB ® X

Figura 5: Configuracion de Props

Props y Generadores

Para afiadir generadores de entidades y obstaculos, implementé una funcion de generacion que crea actores de
manera aleatoria con capacidades de filtrado, distribuyéndolos a lo largo de las habitaciones. Esta funcion busca las
flechas de generacion dentro de la carpeta de generadores.

Configuracion del Personaje

Para el modelo 3D y las animaciones estoy utilizando los recursos de un paquete llamado Advance Locomotion
System V4 [§]]. Este paquete contiene una gran cantidad de animaciones ttiles y algunos modelos simples de los cuales
pude beneficiarme para enfocarme en el desarrollo de las acciones y el razonamiento de los personajes.

Este paquete también incluye una configuracion para el movimiento, pero fue realizada completamente en blue-
prints, lo cual no es facilmente accesible desde C++. Para esta situacion desarrollé mi propia ldgica con respecto a la
interaccion que las entidadesﬂ realizan en el espacio 3D. Los comportamientos incluidos en el proyecto fueron rea-
lizados completamente utilizando blueprints. Esta es una de las ventajas de Unreal Engine, pero surge un problema.
Actualmente no es posible interactuar desde C++ hacia los blueprints, aunque si puede hacerse de forma inversa. Por
lo tanto, desarrollé mi propia version de la locomocion para lograr un movimiento realista, utilizando las animaciones
del paquete.

-

s A
“ A

]
LLEL]

Figura 6: Configuracion del Personaje

Estados

Los estados son las diferentes posturas en las que las entidades pueden cambiar dependiendo de su interaccion,
con el objetivo de aplicar interacciones mas humanas en el mundo real. Las interacciones podrian haberse realizado
sin animaciones, pero si se desean considerar los retrasos en la reaccion y una mejor facilidad de visualizacion, decidi
utilizar las animaciones del paquete de recursos para hacerlo posible. A continuacion se muestran los estados disponibles
creados.

3El codigo puede encontrarse en https://github.com/AndreM222/Al-Entities

» Usado: Actualmente se utiliza para algun tipo de interaccion.

* Planificado: Esta listo para ser utilizado, pero atin no se ha combinado con la 16gica para activarlo.

Postura Descripcion Estado

Default Es una postura que invoca neutralidad y paz Planificado
Masculine | Esta listo para combate o para mostrar poder Usado

Feminine Es una postura mas elegante y noble Planificado
Injured Muestra la baja cantidad de salud de las entidades Usado

HandsTied | Muestra cuando existe una restriccion en las entidades Planificado
Rifle Sosteniendo un rifle Planificado
Pistol 1H Sosteniendo una pistola con una mano Planificado
Pistol 2H Sosteniendo una pistola con ambas manos Planificado
Bow Sosteniendo un arco Planificado
Torch Sosteniendo una antorcha para iluminacion Planificado
Binoculars | Sosteniendo binoculares para ver a larga distancia Planificado
Box Cargando cajas Planificado
Barrel Cargando un barril Planificado
Reach Postura para alcanzar y tocar el objetivo a corta distancia | Planificado

Acciones

Las acciones son las diferentes capacidades que las entidades tienen para interactuar con el mundo. Esto afiade
mayor complejidad y variedad al razonamiento de las entidades.

‘ Accion ‘ Descripcion Estado

Run Movimiento a alta velocidad Usado

Sprint | Movimiento a velocidad media | Usado

Walk Movimiento a baja velocidad Usado

Crouch | Agacharse en espacios pequefios | Usado

Climb | Escalar paredes Usado
Grab Agarrar un objeto Planificado
Drop Soltar el objeto sostenido Planificado
Jump Saltar Usado
Touch | Tocar el objetivo Usado

Toma de Decisiones a Través de Genomas

He comenzado el desarrollo de la inteligencia de los personajes utilizando genomas, pero atn faltan una variedad
de funciones para que puedan tomar decisiones racionales a través de generaciones de datos proporcionados por los

Figura 7: Vista Previa de Acciones

padres.

Esta aplicacion tuvo éxito en tareas simples, como que las entidades tengan la necesidad de dirigirse a areas es-
pecificas del mapa. Sin embargo, el juego de atrapar (las traes) es una tarea mas compleja que requerira mas datos y
capacidades por parte de las entidades.

Algoritmo Genético

Para mas detalles sobre como funciona esto, se utiliza un algoritmo genético [9], lo cual implica el uso de la
evolucion. En cuanto a la toma de decisiones, podriamos permitir que una entidad intente cablear su propio cerebro
mediante algo llamado mutacion. Sin embargo, habra un limite en cuanto a cuanto puede crecer o encontrar mejores
formas de resolver un problema. Como todos sabemos, cuando se trata del desarrollo personal existen factores internos
y externos que nos ayudan a crecer. Los factores internos se entienden como las experiencias que hemos vivido y que
utilizamos para tomar decisiones, mientras que los factores externos son aquellos que nos ensefian a partir de su propia
experiencia. Este factor no solo nos hace crecer, como lo hace el interno, sino que nos permite crecer de la manera mas
eficiente.

Algoritmo NEAT

El algoritmo NEAT utiliza el algoritmo genético, pero pone en practica la idea de los genomas para desarrollar
sus cerebros. Al contar con sentidos, acciones y neuronas internas, estas neuronas se conectan como topologias aumen-
tadas, lo que significa que su cerebro evoluciona segun sus necesidades. Sin embargo, para mantener cierto control, se
establece un limite maximo de neuronas.

El algoritmo toma dos padres y los combina utilizando feromonas determinadas por su similitud, la cual en este caso
se define como qué tan bien resuelven su tarea. Todas estas neuronas pueden combinarse entre si y consigo mismas.
Para realizar una limpieza, se implementd una funcion que detecta si alguna conexioén no cumple ninguna funcién y la
elimina.

Parent 1

Offspring

Parent 2

Figura 8: Algoritmo Genético

Si una entidad tiene demasiados sentidos, puede verse abrumada y no ejecutar correctamente sus acciones, pero si
tiene muy pocos, no encontrara la mejor forma de resolver un problema.

% RO%QRQ{{A\

S sz NGRS X AN
78 B
RGES ECRKINSUIIN 20K
RS NN /N NN A
O "apo@‘\O/’o 0 S5

\
¢} 2K) O
SN RSN O

NV AV 2V &

INPUT

1Nd1no

Figura 9: Algoritmo NEAT

Senses

Para estas entidades, comencé a desarrollar sentidos similares a los de los humanos. Por sentidos me refiero al
sentido del oido, el sentido de la vista, etc. Sin embargo, para este proyecto limitaremos estos sentidos a los siguientes.

Tipo de Sentido | Descripcion Estado
Espacio Este sentido permitira a las entidades saber donde se encuentran. En Uso
Tacto Se utilizara para obtener datos de sus interacciones y decidir si En Desarrollo

les agrada o desagrada.

Vista Permite a las entidades saber qué tienen frente a ellas y decidir qué hacer. | En Uso

Pero cada entrada tiene subdivisiones que crean complejidad adicional. Por ejemplo, para obtener la vista es nece-
sario calcular la distancia a los actores, la distancia a las paredes, la cantidad de poblacion, entre otros. Para ello, se
utilizan diversos trazados con el fin de calcular distancias, cantidades, qué hay al frente, etc.

10

Figura 10: Vista Previa de los Sentidos

El comportamiento inicial solo contaba con correr, saltar y escalar como acciones. En cuanto a los sentidos, se
detectaba la densidad de poblacion y la distancia, asi como una configuraciéon minima de la distancia a los limites. Los
personajes comenzaron Unicamente a moverse en circulos y no realizaban nada en particular. Por ello, se afiadieron mas
sentidos y acciones como la deteccion de bordes, la ubicacion actual basada en los limites y valores normalizados. Con
esto se incremento su proceso de razonamiento y comenzaron a navegar mas; algunos no hacian nada, y otros saltaban
si se detectaba una pared cercana o, por el contrario, si no la habia. Result6 fascinante observar como comenzaron a
desarrollarse mas a medida que podian percibir y realizar mas acciones.

Todo en Uno

Dado que la escala de este proyecto es bastante grande y que ademas muchos recursos pueden utilizarse para pruebas
que no seran necesarios en el producto final, separé todos los componentes en distintos repositorios. Sin embargo, esto
implica que en algin punto debe realizarse una fusion. Unreal Engine no es tan sencillo de manejar cuando se trata de
fusionar distintos proyectos en uno solo, a diferencia de otras herramientas, por lo que fue necesario crear un sistema
de fusion automatizado utilizando un archivo de cmake [l

Este proyecto se encargara de la interfaz de usuario y de la comunicacion entre todos los componentes creados
sin afectar los scripts originales. Esto permite mantener la seguridad del codigo al aislarlo en diferentes repositorios,
evitando asi posibles rupturas.

Por qué CMake

Inicialmente pensé en crear un archivo bash para ejecutar la fusion entre los proyectos, pero esto habria limitado la
configuracion a sistemas operativos especificos. CMake, aunque requiere una instalacion, permite que el proceso de
ejecucion sea multiplataforma, lo que lo convierte en una opcion ideal.

4Para el proyecto fusionado, véase https://github.com/AndreM222/Tag-Al-Sandbox

11

Como Anadir

Para facilitar la configuracion, decidi utilizar un archivo json para listar los proyectos que se desean fusionar, asi
como una opcion de filtrado. Este sistema de fusion se encarga de eliminar archivos no importantes, como los de
compilacion y el script principal de los proyectos, y reemplaza todas las APIs por las del proyecto actual.

Evaluacion

Trayectoria

Las entidades parecen terminar siguiendo un patrén de desplazarse hacia direcciones especificas hasta que logran
tocar su objetivo o evitarlo. Sin embargo, se observa una mejora constante con el tiempo en su comportamiento y
adaptacion a diferentes entornos.

Intenté ejecutarlo bajo los mismos requisitos que I programmed some creatures [3]] para comprobar qué ocurriria
con una misién mas basica, como dirigirse a areas especificas del mapa. Al ejecutarlo, terminaron reaccionando de la
misma manera. Esto puede deberse a que un juego de atrapar requiere sentidos como la vista, el tacto y el sentido del
espacio para tomar decisiones mas racionales.

Obstaculos

Dado que aun no se han realizado muchas pruebas, por ahora las entidades parecen caminar hacia las paredes en
ciertos angulos hasta que logran cruzar al otro lado si es necesario.

Se requeriran mas pruebas para observar como mejora su comportamiento con el tiempo.

Qué Sigue

Continuaré desarrollando la estructura para la toma de decisiones y trasladaré el proyecto a la supercomputadora
para comenzar a obtener datos mientras contintio implementando nuevas funcionalidades. También necesito desarrollar
una interfaz de usuario que me permita obtener datos de los eventos, asi como tomar capturas de pantalla en cada
generacion. Mientras las entidades se ejecutan en segundo plano, estaré trabajando en los comportamientos adicionales
para implementarlos.

Para mejorar la toma de decisiones de las entidades, comenzaré a incorporar mas sentidos. Esto mejorara su capa-
cidad de decision al poder elegir ubicaciones basandose en donde estuvieron, lo que tocaron o lo que vieron, asi como
en lo que consideran interesante, peligroso o irrelevante.

El comportamiento de las entidades atin es primitivo y requiere mayor desarrollo para observar mejoras mas sig-

nificativas. Se necesitan iteraciones adicionales para analizar como interactiian con sus entornos y si logran aprender
exitosamente a atrapar o escapar del objetivo.

12

Referencias

(1]

(2]

(8]

(9]

R.A.Mossiand R. Sundaram, “Tag ai-sandbox,” in 2025 ASEE North Central Section (NCS) Annual Conference,
Marshall University, Huntington, West Virginia: ASEE Conferences, Mar. 2025. [Online]. Available: https :
//peer.asee.org/54692

OpenAl. “Multi-agent hide and seek,” Accessed: Feb. 14, 2025. [Online]. Available: https://www.youtube
.com/watch?v=kopoLzvhb57Y

D. R. Miller. “I programmed some creatures,” Accessed: Feb. 14, 2025. [Online]. Available: https://www.yo
utube.com/watch?v=N3tRFayqgVtk&t=2368s

GeeksForGeeks. “A* search algorithm,” Accessed: Feb. 14, 2025. [Online]. Available: https://wuw.geeksf
orgeeks.org/a-search-algorithm/

Jacob. “I rewrote my dungeon generator!” Accessed: Feb. 14, 2025. [Online]. Available: https://www.youtu
be.com/watch?v=NpSbv_Tg4Bw&t=200s

GeeksForGeeks. “Breadth first search or bfs for a graph,” Accessed: Feb. 5, 2025. [Online]. Available: https:
//www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/

R. Ree. “How to create epic procedural dungeons,” Accessed: Feb. 14, 2025. [Online]. Available: https://ww
w.youtube.com/watch?v=4ddbnQIuwAM

Longmire. “Advance locomotion system v4,” Accessed: Feb. 14, 2025. [Online]. Available: https://www.fa
b.com/listings/ef9651a4-fb55-4866-a2d9-1b38b028£9c7

GeeksforGeeks. “Genetic algorithms,” Accessed: Mar. 30, 2025. [Online]. Available: https://www.geeksfo
rgeeks.org/genetic-algorithms/

R. MacWha. “Evolving ais using a neat algorithm,” Accessed: Mar. 30, 2025. [Online]. Available: https://w
ww.geeksforgeeks.org/a-search-algorithm/

13

https://peer.asee.org/54692
https://peer.asee.org/54692
https://www.youtube.com/watch?v=kopoLzvh5jY
https://www.youtube.com/watch?v=kopoLzvh5jY
https://www.youtube.com/watch?v=N3tRFayqVtk&t=2368s
https://www.youtube.com/watch?v=N3tRFayqVtk&t=2368s
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.youtube.com/watch?v=NpS5v_Tg4Bw&t=200s
https://www.youtube.com/watch?v=NpS5v_Tg4Bw&t=200s
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.youtube.com/watch?v=4ddbnQIuwAM
https://www.youtube.com/watch?v=4ddbnQIuwAM
https://www.fab.com/listings/ef9651a4-fb55-4866-a2d9-1b38b028f9c7
https://www.fab.com/listings/ef9651a4-fb55-4866-a2d9-1b38b028f9c7
https://www.geeksforgeeks.org/genetic-algorithms/
https://www.geeksforgeeks.org/genetic-algorithms/
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/a-search-algorithm/

	Introducción
	Trabajos Relacionados
	Requisitos
	Generación del Mundo
	Detección de Colisiones
	Encapsulación del Mundo
	Semilla
	Props y Generadores

	Configuración del Personaje
	Estados

	Acciones
	Toma de Decisiones a Través de Genomas
	Algoritmo Genético
	Algoritmo NEAT
	Senses

	Todo en Uno
	Por qué CMake
	Cómo Añadir

	Evaluación
	Trayectoria
	Obstáculos

	Qué Sigue
	Referencias

